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In this paper, we propose explicit multi-symplectic schemes for Klein–Gordon–Schröding-
er equation by concatenating suitable symplectic Runge–Kutta-type methods and sym-
plectic Runge–Kutta–Nyström-type methods for discretizing every partial derivative in
each sub-equation. It is further shown that methods constructed in this way are multi-
symplectic and preserve exactly the discrete charge conservation law provided appropriate
boundary conditions. In the aim of the commonly practical applications, a novel 2-order
one-parameter family of explicit multi-symplectic schemes through such concatenation
is constructed, and the numerous numerical experiments and comparisons are presented
to show the efficiency and some advantages of the our newly derived methods. Further-
more, some high-order explicit multi-symplectic schemes of such category are given as
well, good performances and efficiencies and some significant advantages for preserving
the important invariants are investigated by means of numerical experiments.
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1. Introduction

In this paper, we consider the Klein–Gordon–Schrödinger (KGS) equation
i@tuþ 1
2 @xxuþ uu ¼ 0; x 2 R; t P 0;

@ttu� @xxuþ u� juj2 ¼ 0; x 2 R; t P 0;

(
ð1:1Þ
which describes a system of conserved scalar nucleons interacting with neutral scalar Mesons coupled with Yukawa inter-
action, where uðx; tÞ represents a complex scalar nucleon field, uðx; tÞ a real scalar meson field, and i ¼

ffiffiffiffiffiffiffi
�1
p

. We supplement
(1.1) by prescribing the initial-boundary value conditions for uðx; tÞ and uðx; tÞ with:
ujt¼0 ¼ u0ðxÞ; ujt¼0 ¼ u0ðxÞ; utjt¼0 ¼ u1ðxÞ;
lim
jxj!1

juj ¼ 0; lim
jxj!1

u ¼ 0;

lim
jxj!1

j@xuj ¼ 0; lim
jxj!1

@xu ¼ 0;
ð1:2Þ
. All rights reserved.
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then, we can implement zero (or periodic) boundary conditions on the finite interval for subsequent discretizations and com-
putations. The Eq. (1.1) consists of the classical Schrödinger equation and Klein–Gordon equation. Over the last tens of years,
there have been a great deal of work on the numerical solving Schrödinger equations ([9,11] and references therein) and
Klein–Gordon equations ([5,14] and references therein). In numerical analysis for ODEs and PDEs, whether or not some spe-
cial characters or structures of the equations are preserved precisely is an important point in performing reliable numerical
integrations, as for this, we refer to it as structure-preserving algorithms. Recently, the multi-symplectic methods, i.e. which
preserving multi-symplectic geometric structure under appropriate discretizations, have been proposed and investigated for
some important Hamiltonian partial differential equations (HPDEs), such as KdV equation [1], Schrödinger equation [8],
Klein–Gordon equation [14] and Dirac equation [7], etc. As for the KGS equation, up to now there have been numerous the-
oretical results and numerical investigations (see [2,17,12] and references therein). Xiang [17] proposed a conservative spec-
tral method for the periodic initial-value problem for the KGS equation with the nonlinear terms. Bao and Yang [2] suggested
a time-splitting pseudo-spectral method for the KGS equation of more general form (the KGS equation we consider in this
paper is the standard 1-dimensional KGS equation with some parameters vanished), that is, Fourier pseudo-spectral discret-
ization for the spatial derivatives and Crank–Nicolson/leap-frog schemes for the time derivatives including some technical
splitting procedures, and the deduced scheme hence is either explicit or implicit but could be solved explicitly since the KGS
equation they considered had the special form in the non-derivative part. Kong et al. [12] first notes that the KGS equation
has a natural multi-symplectic structure and proposed the multi-symplectic mid-point scheme for the discretization of the
KGS equation, he showed that the multi-symplectic scheme he used preserves the discrete charge conservation law and
investigated some important conservative properties numerically as well. Unfortunately, the multi-symplectic mid-point
scheme applied to the KGS equation is implicit. It results in a huge expense in numerical solving systems of nonlinear equa-
tions at each time step for initial or initial-boundary value problems, especially in the practical applications with 2 or 3 spa-
tial dimensions. Accordingly, it is natural to bring the multi-symplecticity, the intrinsic geometric character of the KGS
equation and the explicitness, the computational efficiency and performance together, in other words, to investigate explicit
(or as mentioned in Bao et al.[2] ‘‘can be solved explicitly”) multi-symplectic integrators for the KGS equation.

In [6], authors propose the totally explicit schemes for the model problem – the wave equation. In this paper, the methods
are suggested in a different manner, roughly speaking, they are not totally explicit but can be solved explicitly, where also we
refer to this as the word explicit, which we will emphasized especially in Section 3. This paper is organized as follows. We
outline a multi-symplectic form of the KGS equation (which is a little different from that given in [12]) and briefly discuss
some important conservative properties of the equation in the rest of this section. In Section 2, we briefly review the explicit
multi-symplectic Runge–Kutta–Nyström methods in the case of Hamiltonian ODEs. In Section 3, we proposed a new class
explicit multi-symplectic integrators for KGS equation by using the concatenation of symplectic RK and RKN methods
and investigate some discrete properties under the discretization, a new 2-order one-parameter family of schemes is con-
structed explicitly as an example. We demonstrate some numerical experiments in Section 4, where we use one of the family
of schemes we derived in the previous section to simulate the KGS equation and some of its conserved properties, simulta-
neously, some numerical comparisons with some other explicit 2-order schemes are exhibited. In order to exhibit the good
performance and efficiency of our methods, we give an Appendix, in which we construct some high-order schemes and
numerical behaviors of them are observed perfectly. The paper ends with conclusions including some of further work.

Set uðx; tÞ ¼ qðx; tÞ þ ipðx; tÞ, where pðx; tÞ and qðx; tÞ are real valued functions, then the Eq. (1.1) can be rewritten as
@tqþ 1
2 @xxpþ up ¼ 0;

@tp� 1
2 @xxq� uq ¼ 0;

@ttu� @xxuþ u� ðq2 þ p2Þ ¼ 0:

8><
>: ð1:3Þ
We introduce new variables g ¼ @xq; f ¼ @xp; v ¼ @tu; w ¼ @xu. Substituting these into the above system (1.3) and obtain
the general form of the multi-symplectic Hamiltonian partial differential equations, which is formulated in the abstract form
M@tzþ K@xz ¼ rzSðzÞ; ð1:4Þ
where z ¼ ðq; p; g; f ; u;v ;wÞT ;M and K are two skew-symmetric matrices (which can be singular),
M ¼

0 1 0 0 0 0 0
�1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1

2 0
0 0 0 0 � 1

2 0 0
0 0 0 0 0 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; K ¼

0 0 � 1
2 0 0 0 0

0 0 0 � 1
2 0 0 0

1
2 0 0 0 0 0 0
0 1

2 0 0 0 0 0
0 0 0 0 0 0 � 1

2

0 0 0 0 0 0 0
0 0 0 0 1

2 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

and SðzÞ is a real smooth function of the state variable z and for the system (1.1), it is given by
SðzÞ ¼ 1
2

uðq2 þ p2Þ þ 1
4
ðg2 þ f 2 � u2 � v2 þw2Þ:
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The multi-symplectic form for the KGS system formulated in [12] is a little different from that we outlined above. The
multi-symplectic Hamiltonian partial differential equation (MHPDEs) (1.4) possesses the multi-symplectic conservation
law
@txþ @xj ¼ 0; ð1:5Þ
where
x ¼ dz ^M dz; j ¼ dz ^ K dz
are differential 2-forms, which presents the geometric character on the phase space, here ^: stands for the exterior product.
After some straightforward calculation, the multi-symplectic conservation law (1.5) for the KGS equations (1.1) can be writ-
ten in terms of the following equivalent form
@t½2dq ^ dpþ du ^ dv � þ @x½dg ^ dqþ df ^ dpþ dw ^ du� ¼ 0: ð1:6Þ
As discussed in many contexts ([3–5,14] and references therein), an arbitrary MHPDEs in the form of Eq. (1.4) has three local
conservation laws, i.e. the multi-symplectic conservation law just presented, the energy and momentum conservation laws,
which are satisfied where is well defined in the space-time domain. Further, when imposed appropriate boundary condi-
tions, e.g. periodic boundary conditions or zero boundary conditions, one can obtain the three corresponding global conser-
vation laws, by integrating the local ones over the whole spatial domain considered and the flux terms will vanish under the
boundary requirements and then the statement is verified. Some important global conservation laws investigated in this pa-
per are listed as follows:

(i) The total energy conservation law
EðtÞ :¼
Z
R
ðuðx; tÞ2 þ utðx; tÞ2 þ uxðx; tÞ2 þ juxðx; tÞj

2Þ � 2uðx; tÞjuðx; tÞj2 dx

¼
Z
R
ðuðx;0Þ2 þ utðx;0Þ2 þ uxðx; 0Þ2 þ juxðx; 0Þj

2Þ � 2uðx;0Þjuðx;0Þj2 dx :¼ Eð0Þ: ð1:7Þ
(ii) The total momentum conservation law
MðtÞ :¼
Z
R
Imðuðx; tÞuxðx; tÞÞ � utðx; tÞuxðx; tÞdx ¼

Z
R
Imðuðx;0Þuxðx;0ÞÞ � utðx;0Þuxðx; 0Þdx :¼Mð0Þ; ð1:8Þ
where Im stands for the imaginary part, and u denotes the complex conjugate of u.
(iii) The charge conservation law
CðtÞ :¼
Z
R
juðx; tÞj2 dx ¼

Z
R
ju0ðxÞj

2 dx :¼ Cð0Þ: ð1:9Þ
The former two conservation laws show that the energy and the momentum are conserved all the time in the interacting,
and the last one describes the probability of the nucleon particles in the whole space and thus is of course a conserved quan-
tity. We remark here that, corresponds to the three global conservation laws, there exist three local ones, which imply the
former under appropriate boundary conditions [8,11].

2. Review of explicit symplectic integrators for Hamiltonian ODEs

As well-known, for the general case of Hamiltonian ODEs, there is no symplectic Runge–Kutta (RK) method is explicit. In
the separable cases, however, one can find some explicit symplectic schemes, which come mainly from partitioned Runge–
Kutta (PRK) methods and Runge–Kutta–Nyström (RKN) methods. For the purpose of this context, we start with the RKN
methods applied to the following Hamiltonian dynamical system in the case of ODEs
_q ¼M�1p; _p ¼ �rqUðqÞ; p� q 2 Rn � Rn; ð2:1Þ
where the q variables represent Lagrangian coordinates, and the p variables the corresponding momenta. The Hamiltonian of
the above system is given by
Hðp;qÞ ¼ 1
2

pT M�1pþ UðqÞ;
with M 2 Rn�n being a constant nonsingular and commonly symmetric matrix. It is evident that this system is equivalent to
the following second-order differential equations
€q ¼ f ðqÞ; f ðqÞ ¼ �M�1rqUðqÞ: ð2:2Þ
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Observing the Hamiltonian system (2.1) and its alternative expression (2.2), we can think of it as a first-order differential
equation with variables z ¼ ðpT ;qTÞT or with p-variables and q-variables or as a second-order differential system with only
q-variables. Different observations may lead to different ideas and then result in different numerical methods here. Precisely
saying, it can be discretized by an r-stage RK method in the first case, two r-stage RK methods in the second case, and an r-
stage RKN method in the last situation. Furthermore, it is easy to verify that the category of the first discretizations belongs
to the second and the second belongs to the last category [15]. But the reverse may not be right. Thus, for the general second-
order ODEs (2.2), RKN methods cover both RK and PRK methods and this fact is one of the biggest motivations for us to inves-
tigate RKN methods to seek for what we want.

It is known that, an r-stage RKN method, which we denoted by N r ¼ ðA; b; c; bÞ, applied to (2.2) with the local starting
point t ¼ tk yields
Q i ¼ qk þ cih _qk þ h2
Xr

j¼1

aijf ðQ jÞ;

qkþ1 ¼ qk þ h _qk þ h2
Xr

i¼1

bif ðQ iÞ;

_qkþ1 ¼ _qk þ h
Xr

i¼1

bif ðQiÞ;

ð2:3Þ
where qk denotes an approximation to qðtkÞ;Q iði ¼ 1; . . . ; rÞ are the internal stage values, and _qk stands for an approximation
to _qðtkÞ. Here, A ¼ ðaijÞri;j¼1; b ¼ ðbiÞri¼1; c ¼ ðciÞri¼1 and b ¼ ðbiÞ

r
i¼1 are the corresponding coefficients of the RKN method. Recall-

ing the symplectic conditions for the RKN methods are given by
bi ¼ bið1� ciÞ; bibj � biaij ¼ bjbi � bjaji; ð2:4Þ
hence the explicit symplectic RKN method N r can be formulated as the form of Butcher’s tabular [15]
:

Then combining with order conditions for various order accuracies, one can get the corresponding explicit symplectic RKN
(SRKN) methods of various orders [15].

For an example here, we present a family of 2-stage 2-order explicit SRKN methods with the following Butcher’s tabular
; ð2:5Þ
where, a and b; ða – bÞ are two free parameters. And other higher-order SRKN methods, we refer to [13]. In this paper, we
denote the SRKN methods of this class by SN 2ða; bÞ, which plays an important role in the subsequent discussions.

3. Explicit multi-symplectic integrators for Klein–Gordon–Schrödinger equations

In this section, we first construct a novel class of numerical algorithms for the KGS equation by concatenation of various
RK-type and RKN-type methods for the numerical approximations to each partial derivative in the KGS equations and then
discuss the multi-symplecticity of the newly derived methods. As a practical example, we construct a class of 2-order meth-
ods with the scheme (2.5) for the spatial discretization for the KGS equations and discuss the explicitness in details.

For convenience, we reformulate the KGS equations (1.3) into the following ODE expressions in terms of each partial
derivative:

In the time direction,
ut ¼ v ;
v t ¼ R;

�
ð3:1aÞ

pt ¼ T;

qt ¼ S;

�
ð3:1bÞ
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and in the space direction,
ux ¼ w;

wx ¼ Rþ u� ðq2 þ p2Þ;

�
ð3:2aÞ

px ¼ f ;

fx ¼ 2ð�S� upÞ;

�
ð3:2bÞ

qx ¼ g;

gx ¼ 2ðT � uqÞ;

�
ð3:2cÞ
where R; S and T are actually functionals of the state variables z. They can also be viewed as symbol variables here, for
they only connect the temporal and spatial discretizations together to form fully discrete schemes by eliminating
themselves.

We then discretize the above ODEs by using suitable symplectic methods. Applying an r-stage explicit RKN method
N r ¼ ðAð2Þ; bð2Þ; cð2Þ; bÞ to (3.1a), a diagonally implicit RK method RKr ¼ ðAð1Þ; bð1Þ; cð1ÞÞ to (3.1b), and an s-stage RKN method
N s ¼ ðâ; b̂; ĉ; b̂Þ to (3.2a)–(3.2c), then it leads to the following numerical integrator.

In every small local box ½x0; x1� � ½t0; t1� with the starting point ðx0; t0Þ, we have the following numerical scheme:
Q i
î ¼ q0

î
þ s

Xi

j¼1

að1Þij Sj
î
; ð3:3Þ

q1
î
¼ q0

î
þ s

Xr

i¼1

bð1Þi Si
î; ð3:4Þ

Pi
î ¼ p0

î
þ s

Xi

j¼1

að1Þij Tj
î
; ð3:5Þ

p1
î
¼ p0

î
þ s

Xr

i¼1

bð1Þi Ti
î; ð3:6Þ

Ui
î ¼ u0

î
þ cð2Þi sv0

î
þ s2

Xi�1

j¼1

að2Þij Rj
î
; ð3:7Þ

u1
î
¼ u0

î
þ sv0

î
þ s2

Xr

i¼1

bð2Þi Ri
î; ð3:8Þ

v1
î
¼ v0

î
þ s

Xr

i¼1

bð2Þi Ri
î; ð3:9Þ

Q i
î ¼ qi

0 þ ĉîh gi
0 þ h2

Xs

ĵ¼1

âî̂j½2ðT
i
ĵ � Ui

ĵQ
i
ĵÞ�; ð3:10Þ

qi
1 ¼ qi

0 þ h gi
0 þ h2

Xs

î¼1

b̂î½2ðT
i
î � Ui

îQ
i
îÞ�; ð3:11Þ

gi
1 ¼ gi

0 þ h
Xs

î¼1

b̂î½2ðT
i
î � Ui

îQ
i
îÞ�; ð3:12Þ

Pi
î ¼ pi

0 þ ĉîh f i
0 þ h2

Xs

ĵ¼1

âî̂j½2ð�Si
ĵ � Ui

ĵP
i
ĵÞ�; ð3:13Þ

pi
1 ¼ pi

0 þ h f i
0 þ h2

Xs

î¼1

b̂î½2ð�Si
î � Ui

îP
i
îÞ�; ð3:14Þ

f i
1 ¼ f i

0 þ h
Xs

î¼1

b̂î½2ð�Si
î � Ui

îP
i
îÞ�; ð3:15Þ

Ui
î ¼ ui

0 þ ĉîh wi
0 þ h2

Xs

ĵ¼1

âî̂jðR
i
ĵ þ Ui

ĵ � Pi
ĵ

2
� Q i

ĵ

2
Þ; ð3:16Þ

ui
1 ¼ ui

0 þ h wi
0 þ h2

Xs

î¼1

b̂îðR
i
î þ Ui

î � Pi
î

2
� Qi

î

2
Þ; ð3:17Þ

wi
1 ¼ wi

0 þ h
Xs

î¼1

b̂îðR
i
î þ Ui

î � Pi
î

2
� Qi

î

2
Þ: ð3:18Þ
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Using the corresponding variational equations (we omit here, see [14,7] for details), we obtain the following two equalities,
2dq1
î ^ dp1

î þ u1
î
^ dv1

î � 2dq0
î ^ dp0

î � du0
î ^ dv0

î

s
¼ 2s

Xr

i¼1

bð1Þi ½dQi
î ^ dTi

î þ dSi
î ^ dPi

î� þ s
Xr

i¼1

bð2Þi dUi
î ^ dRi

î; ð3:19Þ
and
dgi
1 ^ dqi

1 þ df i
1 ^ dpi

1 þ dwi
1 ^ dui

1 � dgi
0 ^ dqi

0 � df i
0 ^ dpi

0 � dwi
0 ^ dui

0

h

¼ 2h
Xs

î¼1

b̂î½dTi
î ^ dQi

î þ dPi
î ^ dSi

î� þ h
Xs

î¼1

b̂îdRi
î ^ dUi

î: ð3:20Þ
Then according to the property of wedge product, we have the following theorem:

Theorem 3.1. With the assumptions that
bð1Þi ¼ bð2Þi ¼ bi; cð1Þi ¼ cð2Þi ¼ ci; 1 6 i 6 r; ð3:21Þ
the method (3.3)–(3.18) is multi-symplectic and satisfies the discrete multi-symplectic conservation law
s
Xr

i¼1

bi½dgi
1 ^ dqi

1 þ df i
1 ^ dpi

1 þ dwi
1 ^ dui

1 � dgi
0 ^ dqi

0 � df i
0 ^ dpi

0 � dwi
0 ^ dui

0�

þ h
Xs

î¼1

b̂î½2dq1
î ^ dp1

î þ du1
k;̂i ^ dv1

î � 2dq0
î ^ dp0

î � du0
k;̂i ^ dv0

î � ¼ 0; ð3:22Þ
if it obeys the symplectic conditions:
bð1Þi bð1Þj � bð1Þi að1Þij � bð1Þj að1Þji ¼ 0; ð3:23Þ

bð2Þi ¼ bð2Þi ð1� cð2Þi Þ; bð2Þi bð2Þj � bð2Þi að2Þij ¼ bð2Þj bð2Þi � bð2Þj að2Þji ; ð3:24Þ

b̂î ¼ b̂îð1� ĉîÞ; b̂îb̂ĵ � b̂îâî̂j ¼ b̂ĵb̂î � b̂ĵâĵ̂i; ð3:25Þ
for all î; ĵ ¼ 1; . . . ; s; and i; j ¼ 1; . . . ; r.

The proof is similar with some existing references [14,8] and is thus omitted here.
As discussed in [7], we have a discrete analogue of the charge conservation law (1.9) under the numerical discretizations

presented in (3.3)–(3.18).

Theorem 3.2. If the method (3.3)–(3.18) satisfies the following symplectic conditions
bð1Þi bð1Þj � bð1Þi að1Þij � bð1Þj að1Þji ¼ 0; ð3:26Þ

b̂î ¼ b̂îð1� ĉîÞ; b̂îb̂ĵ � b̂îâî̂j ¼ b̂ĵb̂î � b̂ĵâĵ̂i; ð3:27Þ
for all î; ĵ ¼ 1; . . . ; s; and i; j ¼ 1; . . . ; r; then it gives rise to the following discrete charge conservation law
h
X

k

Xs

î¼1

b̂îju
lþ1
k;̂i
j2 ¼ h

X
k

Xs

î¼1

b̂îju
l
k;̂i
j2; ð3:28Þ
provided with zero boundary conditions, i.e. ul
0 ¼ ul

J ¼ 0;8 l.

Note that the assumptions imposed in Theorem 3.2 are weaker than that in Theorem 3.1. In order to discuss the explic-
itness of the multi-symplectic methods constructed here, we start with a class of low-order ones as a reference model.

First, we apply a family of explicit SRKN methods SN 2 a; 1
2þ a

� �
; ð3:29Þ
which belongs to the class SN 2ða; bÞ with b ¼ 1
2þ a to (3.1a). Now, a new problem arises: Does there exist a diagonally im-

plicit 2-stage 2-order RK method RKr ¼ ðAð1Þ; bð1Þ; cð1ÞÞ with the requirements ðcð1Þ1 ; cð1Þ2 Þ ¼ 1
2þ a;1þ a
� �

and
ðbð1Þ1 ; bð1Þ2 Þ ¼ ð1þ 2a;�2aÞ that are imposed in Theorem 3.1 for multi-symplecticity? It is referred to as consistent diagonally
implicit RK methods throughout this paper. Fortunately, the following diagonally implicit SRK method, which is denoted by
SR2ðaÞ
; ð3:30Þ



J. Hong et al. / Journal of Computational Physics 228 (2009) 3517–3532 3523
satisfies the conditions. Now we apply SR2ðaÞ to (3.1b). Then the schemes for time discretizations are available, as for the
space, we make use of the explicit SRKN method denoted by SN 2 � 1

2 ;
1
2

� �
[15]
ð3:31Þ
to approximate the second-order derivatives in (3.2a)–(3.2c). And such discretization is multi-symplectic, according to The-
orems 3.1 and 3.2. Note that in space direction, we can also make use of implicit RKN methods which would not affect the so-called
explicitness of the whole scheme.

Corresponds to the method (3.3)–(3.18), applying the schemes (3.29)–(3.31) to the KGS equation (1.3) as stated above
yields that
ulþ1
2þa

k ¼ ul
k þ

1
2
þ a

� �
sY

lþ1
2þa

k ;

ulþ1þa
k ¼ ul

k þ ð1þ 2aÞsY
lþ1

2þa
k þ ð�aÞsYlþ1þa

k ;

ulþ1
k ¼ ul

k þ ð1þ 2aÞsY
lþ1

2þa
k þ ð�2aÞsYlþ1þa

k ;

ui
kþ1 ¼ ui

k þ h/i
k þ

1
2

h2ð�2iYi
k � 2ui

ku
i
kÞ; i ¼ lþ 1

2
þ a; lþ 1þ a;

/i
kþ1 ¼ /i

kþ1 þ
1
2

hð�2iYi
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where Y ¼ Sþ iT;/ approximates ux, the local box becomes ½xk; xkþ1� � ½tl; tlþ1�, and l and k are non-negative integers.
Eliminating the symbol variables Y ;R and the introduced variables /;v ;w, the numerical scheme is rewritten as follows:
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We refer to the above numerical scheme as SRNN2(a), which we can see is of order 2 in both space and time, and it gives rise
to one-parameter family of multi-symplectic integrators for (1.1).

Proposition 3.3. The numerical scheme SRNN2(a) is multi-symplectic, and it preserves the following discrete charge conservation
law
1
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k j
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2 ¼ 1
2
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2
;

provided with zero boundary conditions, i.e. ul
0 ¼ ul

J ¼ 0;8 l.

Moreover, SRNN2(a) advances explicitly from ðul
k;u

l
kÞ to ðulþ1

k ; ulþ1
k Þ without any iterative process, which can be verified

by employing the following algorithm:

step1. Initial value u0
k ; and v0

k !
ð3:35Þ

u
1
2þa
k ;

step2. u
1
2þa
k ; andinitialvalue u0

k !
ð3:32Þ

u
1
2þa
k ;

step3. u
1
2þa
k ;u

1
2þa
k andinitialvalue u0

k ;v0
k !
ð3:36Þ

u1þa
k ;

step4. u
1
2þa
k ;u1þa

k ;u
1
2þa
k and initial value u0

k !
ð3:33Þ

u1þa
k ;

step5. u
1
2þa
k ;u1þa

k ;u
1
2þa
k ;u1þa

k and initial value u0
k ;u

0
k ;v0

k !ð3:34Þ;ð3:37Þ;ð3:38Þ
u1

k ;u
1
k ;v1

k ;

step6. u0
k ¼ u1

k ;u
0
k ¼ u1

k ;v0
k ¼ v1

k , return to step1, and continue running.

The key point for the explicitness in the above manipulation depends on the special character of the KGS equations, the
first equation in the system (1.1) is linear with respect to variable u and this is well inherited by the discretizations (3.32)–
(3.34). More concretely, if the values of u-variables are known in the nonlinear term uu, we can obtain the unknown numer-
ical values of u-variables by solving a linear system.

It should be emphasized here that we say numerical methods for solving the system (1.1) explicitly means that advancing from
ðul

k;u
l
kÞ to ðulþ1

k ; ulþ1
k Þwithout any iterative process, i.e. avoid solving any nonlinear equation at each time level. The four schemes

listed later are all called ‘‘explicit” method in this sense.
A good way maybe the best way to study a numerical method for a present model is to perform its investigations in com-

puters. We will whereafter make some actual numerical experiments by using the method SRNN2(a) we just constructed. In
order to do numerical comparisons, we provide three other 2-order explicit methods, along with SRNN2(a) are referred to as
schemes I, II, III & IV and listed as follows:

i. Scheme I is the conservative scheme
i
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kj
2 ¼ 0:
We remark here that scheme I preserves both the discrete charge conservation law and the discrete total energy law
exactly, more details referred to Zhang [18].

ii. Scheme II
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is a widely used scheme, which is obtained by applying the modified Crank–Nicolson scheme to the first equation in
(1.1), and the five-point scheme to the second equation.

iii. Scheme III is given by
i
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This is a non-multi-symplectic method.
iv. Scheme IV is the multi-symplectic scheme SRNN2(a), which we have constructed.

We give some remarks for the four schemes here. First, they are all explicit, this is an important precondition we should
conform in numerical comparisons. It is unfair to carry out comparisons between explicit methods and implicit methods
over long-time simulation, since the implicit schemes, in general, have better stabilities. Second, they are of 2 order, i.e.
the truncation errors are all in the order of Oðh2 þ s2Þ; it is the basis for us to compare the magnitudes of various errors
by using the four schemes. Moreover, they are conditionally linearly stable (by using the standard Von Neumann analysis),
on this point, we refer to [6,10]. Last, they all preserve their corresponding discrete analogues of the charge conservation law
exactly.

The results of the numerical experiments are presented in the following section, all numerical comparisons presented
among the four schemes are processed under the same numerical conditions.

4. Numerical experiments

Consider the following solitary-wave solutions of system (1.1)
uðx; t; qÞ ¼ 3
ffiffiffi
2
p

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p sech2 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p ðx� qtÞ exp i qxþ 1� q2 þ q4

2ð1� q2Þ t
� �� �

;

uðx; t; qÞ ¼ 3
4ð1� q2Þ sech2 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p ðx� qtÞ;
ð4:1Þ
where, 0 6 jqj 6 1 indicates the propagating velocity of wave. In our numerical trials, we take the following initial conditions
u0ðxÞ ¼ uðx; 0; qÞ u0ðxÞ ¼ uðx; 0; qÞ; v0ðxÞ ¼ utðx; t; qÞjt¼0;
which are evidently obtained from the exact solutions (4.1) by setting t ¼ 0.
Observing that the analytic solutions in (4.1) are exponentially decreasing when jxj tends to infinity for any fixing t and

noting that our numerical computations must be implemented on a finite spatial interval, we take zero boundary conditions
over the space domain ½�L; L� with L ¼ 40, namely
uð�L; tÞ ¼ uðL; tÞ ¼ 0; uð�L; tÞ ¼ uðL; tÞ ¼ 0; utð�L; tÞ ¼ utðL; tÞ ¼ 0:
Next, we define E l
L as the discrete form of total energy (1.7) at time-step tl to approximate the continuous total energy EðtlÞ,

and
ðEteÞl ¼ E
l
L � E

0
L ; ð4:2Þ
denotes the global error propagation of total energy, and Ml
L as the discrete form of total momentum (1.8), and

ðEtmÞl ¼M
l
L �M

0
L as the corresponding global error propagation. Further, we set
ðerroruÞl ¼max
k
juðxk; tlÞ �ul

kj; ðerroruÞl ¼ max
k
juðxk; tlÞ � ul

kj ð4:3Þ
to stand for the maximum errors of solutions at the time-step tl. Here, uðxk; tlÞ and ul
k are value of the exact solution and

numerical solution at ðxk; tlÞ, respectively, so do uðxk; tlÞ and ul
k. As stated in Theorem 3.2, we use
Cl
L ¼ h

X
k

Xs

î¼1

b̂îju
l
k;̂i
j2 ð4:4Þ
to represent the discrete charge conservation law, and
ðEtcÞl ¼ C
l
L � C

0
L

the global error of the discrete charge conservation law.
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In Figs. 1–4, we exhibit maximum errors of numerical solutions, global errors of charge conservation law, total energy and
total momentum over long time interval ½0;80� for q ¼ 0:1, with the space step h ¼ 0:1 and the time step s ¼ 0:01 for
schemes (I–IV).

Fig. 1 presents both the maximum errors of solutions uðx; tÞ (above) and uðx; tÞ (below). The maximum errors of uðx; tÞ all
grow like a linear line with very small local oscillations almost unobservable in the present scale of the plot (Left) and more-
over, the four curves displayed in left-top plot of Fig. 1 are almost the same and we almost can’t distinguish from one to
another. Only when viewed from the partial enlarged detail (right), we can see some differences; The errors of uðx; tÞ also
exhibited the similar behaviors. Anyway, we can say that the errors display in this figure behave all normally and reasonably.

The global errors in preserving the discrete charge conservation laws are exhibited in Fig. 2 with different line types. It
shows that all the four schemes preserve their corresponding discrete analogues of the charge conservation law perfectly,
in the sense of roundoff along so long time ½0;80�. Comparing with the former three schemes, we find that the error obtained
by using Scheme IV behaves a little better, that is, there is fewer error accumulations than the others.

Figs. 3 and 4 show the global errors in preserving the discrete analogues of the discrete total energy and momentum,
respectively. Other than the special conservative schemes, e.g. the energy/momentum-preserving algorithms, the majority
of numerical methods, involving the symplectic and multi-symplectic methods, cannot preserve energy and momentum
in nonlinear cases in general. Observing from the 4 graphs in Fig. 3, one see that only scheme I preserves the discrete energy
in the magnitude within roundoff, it is not a surprise that this scheme is an energy-preserving scheme [18], but it brings
slight error accumulations with the evolution of time. As for schemes II and III, however, it is not so satisfactory for both
of them in preserving the discrete total energy. Observing from the right-top plot in Fig. 3, the error by using scheme II oscil-
lates more and more rapidly and the amplitude of the oscillation grows bigger and bigger, this can be called instability to
some extent; the numerical result in the left-below graph in Fig. 3 grows linearly, and it shows that a linear instability
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Fig. 2. Maximum error of charge conservation law ðEtcÞl as a function of the time-step tl for different schemes.
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Fig. 3. Global error of total energyðEteÞlas a function of the time-steptlfor(below) for scheme III; right (below) for scheme IV with a¼�14:J. Hong et al. / Journal of Computational Physics 228 (2009) 3517–3532
for scheme III in preserving the total energy. Now pay attention to the fourth graph in this figure, the error presented here is
obtained by scheme IV and we find that it oscillates reasonably and equably within a small interval near 0 in the scale of
Oð10�9Þ all the time, and the amplitude of the oscillation almost does not change over so long time. Then we conclude that
scheme IV has a good stability with respect to the total energy conservation law though it can’t preserve the energy pre-
timedifferent schemes. Left (above) for scheme I; right (above) for scheme II; left3527
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Fig. 4. Global error of total momentum ðEtmÞl as a function of the time-step tl for different schemes.
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cisely. Fig. 4 show that all the four schemes preserve the discrete total momentum in the scale ofOð10�6Þ and stay stable. It is
a surprise to us that the errors in momentum by the four schemes are almost the same.

According to the numerical results displayed in the previous four figures, with the comparisons and analysis given above,
we conclude that the multi-symplectic schemes we presented have not only good performance and efficiency, the perfect
preserving in the discrete charge conservation law and the stable behaviors in preserving the discrete momentum and en-
ergy conservation laws as well as sometimes a little better than the other three schemes, but also an exact preservation of
the multi-symplectic geometric structure in phase space.

5. Conclusions

In this paper, we concatenate the ideas of multi-symplectic integrators (first considered in [12]) and the explicit numer-
ical schemes (first proposed and emphasized in [2]) for KGS equation. And a novel class of explicit multi-symplectic integra-
tors for the 1-dimensional KGS equation is presented and investigated. Moreover, a corresponding discrete charge
conservation law is obtained under the multi-symplectic discretizations. The low-order and high-order (in the following
Appendix) multi-symplectic schemes demonstrate well in the numerical investigations, they show not only the good perfor-
mance and efficiency, but also the perfect numerical behaviors; i.e. the charge is conserved within roundoff, and it is known
that, in general, multi-symplectic methods can not preserve the energy and momentum exactly, but the numerical results
show that the methods utilized preserve the energy and momentum very sharply. In numerical solving KGS equation, to
avoid huge numerical cost in using various iterative methods for solving nonlinear algebraic systems at each time step,
the idea of explicitness of numerical schemes in this paper could be introduced into studying high-dimensional (e.g. 2 or
3-dimensional) KGS equations. In numerical experiments we also meet some unsolved theoretical problems, for example,
the two conjectures in the end of the following Appendix. The study of explicit multi-symplectic methods for KGS equations
is just at the beginning.

Appendix. High-order explicit multi-symplectic integrators

Reich [14] carried out 2-stage 4-order Gauss–Legendre collocation RK method in the numerical experiments. Wang and
Wang [16] proposed high-order multi-symplectic methods through by the compositions of some existing low-order
schemes. To investigate numerically the performance and efficiency of the high-order multi-symplectic methods should
be important and interesting. Now we pay attention to the numerical implementation of the high-order multi-symplectic
methods.

Firstly, we apply a high-order explicit symplectic RKN (SRKN) method of order 4 and stage 3
ð5:5Þ
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in the t-direction to the second equation of the KGS system (1.1) and a consistent diagonally implicit SRK method of order 4
Fig. 5.
(middle
ð5:6Þ
in the t-direction to the first equation, where, a is the real root of 48x3 � 24x2 þ 1. With regard to the spatial discretizations,
we apply SN 2 � 1

2 ;
1
2

� �
to both the equations in the KGS equations (1.1). Then, we get another explicit multi-symplectic

scheme denoted by SN 42, which is of high-order in time direction.
Secondly, we apply the schemes SR2ðaÞ and SN 2ða; 1

2þ aÞ with both take a ¼ 1
6 to the first and second equations

in (1.1) respectively for time discretizations and a consistent high-order implicit symplectic RKN method of order 4 and
stage 3
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ð5:7Þ
in the x-direction to both of them. Then, we get another explicit multi-symplectic scheme referred to as SN 24, which is high-
order in the space direction.

Finally, we combine the temporal discretizations of the scheme SN 42 and the spatial approximations of the scheme SN 24

to discretize the KGS equations (1.1) correspondingly, a new multi-symplectic method is thus obtained and denoted by SN 44,
which is high-order both in time and in space. As for the three new constructed schemes, we have the following proposition:

Proposition 5.1. The numerical schemes SN 42;SN 24;SN 44 all are multi-symplectic; Moreover, they preserve the discrete charge
conservation laws as follow:
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respectively, provided with zero boundary conditions, i.e. ul
0 ¼ ul

J ¼ 0;8 l.

It can be verified that the truncation error of the scheme SN 42 is Oðh2 þ s4Þ, SN 24 Oðh4 þ s2Þ and the last one Oðh4 þ s4Þ,
which can also be read from Fig. 5 numerically. As demonstrated the low-order schemes in Section 4, here we also investi-
gate the errors in preserving the conservation laws quantitatively by means of changing the stepsizes as well. The numerical
results by the former two schemes are exhibited over time ½0;40�. Roughly speaking, high-order explicit numerical methods
are not of good stability in general, namely the Courant number [10] should be restricted to very small, it means that the
temporal stepsize should be taken very small. The scheme SN 44 considered here is of high-order both in the time and in
space, for the considerations of the stability and storage, its numerical results are here displayed only over the time interval
½0;4�, which seems much shorter than the time for the two schemes SN 42 and SN 24, but the step number is the same as or
more than that by using the former two in the longer time interval ½0;40�.

In Fig. 6, we give a list of numerical results of the global errors of charge for these three high-order schemes with different
stepsizes upon the conditions that q ¼ 0; x0 ¼ 0. It follows from the numerical results displayed in Fig. 6 that the three high-
order schemes all preserve their corresponding discrete analogues of the charge conservation law almost exactly, which is
consistent with the theoretical result given in Theorem 3.1.

From the numerical results given from changing processes of stepsizes exhibited in Fig. 7, it can be concluded that the
global error of the discrete total energy by the scheme SN 42 roughly reaches the magnitude of Oðs4h2Þ, the scheme SN 24
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Fig. 6. Global error of charge ðEtcÞl for SN 42, SN 24 with s ¼ 0:005 and h ¼ 0:4; and for SN 44 with s ¼ 0:0005 and h ¼ 0:4.
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Oðs2h4Þ and the scheme SN 44Oðs4h4Þ. The third numerical results presented show that the errors in energy by SN 44 are all
almost within roundoff, this would not be a surprise that for the three choices of the stepsizes the scales of the order Oðs4h4Þ
are in the unit of at least 10�13, almost the roundoff. Moreover, we can’t get the exact theoretical predictions of the error
decays consistent with the order Oðs4h4Þ in such small scales. From the longitudinal (right) graphs in Fig. 7, it can be read
roughly that scheme SN 42 preserves the discrete total momentum in the scale of Oðh3Þ, the scheme SN 24Oðh5Þ and the
scheme SN 44 Oðh5Þ too. This indicates that the error of momentum is related to the spatial mesh grid size h only. Based
on the numerical results presented in Section 4 and Appendix, we give the following two conjectures

(1) The multi-symplectic scheme (3.3)–(3.18) can preserve the discrete total energy in the order of OðhpsqÞ, where p and q
are the orders of the methods applied to the spatial direction and the temporal direction, respectively.

(2) The error in preserving the discrete momentum is of order Oðhpþ1Þ.
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Fig. 7. Global errors of the energy and momentum, i.e., ðEteÞl (left) and ðEtmÞl (right) for scheme SN 42 (above), scheme SN 24 (middle) and scheme SN 44

(below) with different spatial and temporal stepsizes.
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